Home > Research Activities > Collected References on Radioactivity Studies

 

Modelling-related

 

Abril, J.M., Abdel-Aal, M.M., Al-Gamal, S.A., Abdel-Hay, F.A., Zahar, H.M., 2000. Marine radioactivity studies in the Suez Canal, Part II: Field experiments and a modelling study of dispersion. Estuarine Coastal and Shelf Science 50(4), 503-514. (http://dx.doi.org/10.1006/ecss.1999.0565)

 

Abril, J.M,, Abdel-Aal, M.M., 2000. Marine radioactivity studies in the Suez Canal, A modelling study on radionuclide dispersion. Journal of Environmental Radioactivity 48(3), 279-302. (http://dx.doi.org/10.1016/S0265-931X(99)00079-X)

 

Abril, J.M., Garcialeon, M., 1991. A mathematical approach for modeling radionuclide dispersion in the marine-environment. Journal of Environmental Radioactivity 13(1), 39-54. (http://dx.doi.org/10.1016/0265-931X(91)90038-H)

 

Abril, J.M., Leon, M,G., 1992. A marine dispersion model for radionuclides and its calibration from non-radiological information. Journal of Environmental Radioactivity 16(2), 127-146. (http://dx.doi.org/10.1016/0265-931X(92)90012-I)

 

Abril, J.M., Leon, M.G., 1993. A 2d 4-phases marine dispersion model for nonconservative radionuclides . Part 1. Conceptual and computational model. Journal of Environmental Radioactivity 20(2), 71-88. (http://dx.doi.org/10.1016/0265-931X(93)90035-6)

 

Abril, J.M., Leon, M.G., 1993. A 2d 4-phases marine dispersion model for nonconservative radionuclides . Part 2 Applications. Journal of Environmental Radioactivity 20(2), 89-115. (http://dx.doi.org/10.1016/0265-931X(93)90036-7)

 

Aldridge, J.N., 1998. CSERAM: A model for prediction of marine radionuclide transport in both particulate and dissolved phases. Radiation Protection Dosimetry 75(1-4), 99-103. (http://rpd.oxfordjournals.org/content/75/1-4/99.short)

 

Aldridge, J.N., Kershaw, P., Brown, J., McCubbin, D., Leonard, K.S., Young, E.F., 2003. Transport of plutonium (Pu-239/240) and cesium (Cs-137) in the Irish Sea: comparison between observations and results from sediment and contaminant transport modelling. Continental Shelf Research 23(9), 869-899. (http://dx.doi.org/10.1016/s0278-4343(03)00047-5)

 

Andrews, W.S., Ham ,M.E.J., Bennett, L.G.I., Grandmaison, E.W., 2001. Modeling the dispersion of radionuclides released during reactor accidents aboard nuclear-powered vessels. Journal of Radioanalytical and Nuclear Chemistry 248(3), 657-662. (http://dx.doi.org/10.1023/A:1010680309566)

 

Appelgreen, A., Bergstrom, U., Brittain, J., Gallego, Diaz, E., Hakanson, L., Heling, R., Monte, L., 1996. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems. The project MOIRA. ENEA, RT/AMB/96/17, Rome, Italy.

 

Baeza, A,. Garcia, E., Miro, C., Perianez, R., 2006. Modelling the spatio-temporal evolution of H-3 in the waters of the River Tagus. Journal of Environmental Radioactivity 86(3), 367-383. (http://dx.doi.org/10.1016/j.jenvrad.2005.10.004)

 

Baffos, H., Abril, JM., 2008. Kinetic box models for the uptake of radionuclides and heavy metals by suspended particulate matter: equivalence between models and its implications. Journal of Environmental Radioactivity 99(1), 146-158. (http://dx.doi.org/10.1016/j.jenvrad.2007.07.007)

 

Batlle, J.V.I., Bryan, S., McDonald, P., 2008. A process-based model for the partitioning of soluble, suspended particulate and bed sediment fractions of plutonium and cesium in the eastern Irish Sea. Journal of Environmental Radioactivity 99(1), 62-80.

 

Baxter, M.S., Harms, I., Osvath, I., Povinec, P.P., Scott, E.M., 1998. Modelling the potential radiological consequences of radioactive waste dumping in the Kara Sea. Journal of Environmental Radioactivity 39(2), 161-181.

 

Behrens, E., Schwarzkopf, F.U., Lubbecke, J.F., Bonling, C.W., 2012. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environmental Research Letters 7, 034004 (10pp), DOI:10.1088/1748-9326/7/3/034004

 

Benkdad, A., Laissaoui, A., El Bari, H., Bertmansour, M., IbnMajah, M., 2008. Partitioning of radiostrontium in marine aqueous suspensions: laboratory experiments and modeling studies. Journal of Environmental Radioactivity 99(4), 748-756.

 

Borretzen, P., Salbu, B., 2002. Fixation of Cs to marine sediments estimated by a stochastic modelling approach. Journal of Environmental Radioactivity 61(1), 1-20.   (http://dx.doi.org/10.1016/S0265-931X(01)00107-2)

 

Breton, M., Salomon, J.C., 1995. A 2D long-term advection-dispersion model for the Channel and southern North-Sea. Part A. Validation through comparison with artificial radionuclides. Journal of Marine Systems 6(5-6), 495-513. (http://dx.doi.org/10.1016/0924-7963(95)00020-P)

 

Brown, J., Dowdall, M., Gwynn, J.P., Borretzen, P., Selnaes, O.G., Kovacs, K.M., Lydersen, C., 2006. Probabilistic biokinetic modelling of radiocaesium uptake in Arctic seal species: verification of modelled data with empirical observations. Journal of Environmental Radioactivity 88(3), 289-305. (http://dx.doi.org/10.1016/j.jenvrad.2006.02.008)

 

Brown, J.E., Hosseini, A., Borretzen, P., Thorring, H., 2006. Development of a methodology for assessing the environmental impact of radioactivity in Northern Marine environments. Marine Pollution Bulletin 52(10), 1127-1137.

 

Buffoni, G., Cappelletti, A., 1998. Comment on modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239,Pu-240 by R. Perianez, J. Environ. Radioactivity. 38(2), 173-194, Reply. Journal of Environmental Radioactivity 40(2), 213-214.

Burger, J., 2007. A model for selecting bioindicators to monitor radionuclide concentrations using Amchitka Island in the Aleutians as a case study. Environmental Research 105(3), 316-323. (http://dx.doi.org/10.1016/j.envres.2007.05.017)

 

Cetina, M., Rajar, R., Povinec, P., 2000. Modellino of circulation and dispersion of radioactive pollutants in the Japan Sea. Oceanologica Acta 23, 819–836.

 

Chino, M., Nakayama, H., Nakai, H., Terada, H., Katata, G., Yamazawa, H., 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. Journal of Nuclear Science and Technology, 48(7), 1129–1134.

 

Ciffroy, P., Garnier, J.M., Pham, M.K., 2001. Kinetics of the adsorption and desorption of radionuclides Co, Mn, Cs, Fe, Ag and Cd in freshwater systems: experimental and modelling approaches. Journal of Environmental Radioactivity 55, 71–91.

 

Clifton, J., McDonald, P., Plater, A., Oldfield, F., 1999. Derivation of a grain-size proxy to aid the modelling and prediction of radionuclide activity in salt marshes and mud flats of the eastern Irish Sea. Estuarine Coastal and Shelf Science 48(5), 511-518. (http://dx.doi.org/10.1006/ecss.1998.0461)

 

Cournane, S., Vintro, L.L., Mitchell, P.I., 2010. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments. Journal of Environmental Radioactivity 101(11), 985-991. (http://dx.doi.org/10.1016/j.jenvrad.2010.07.006)

 

du Bois, P.B., Dumas, F., 2005. Fast hydrodynamic model for medium- and long-term dispersion in seawater in the English Channel and southern North Sea, qualitative and quantitative validation by radionuclide tracers. Ocean Modelling 9(2), 169-210. (http://dx.doi.org/10.1016/j.ocemed.2004.07.004)

 

Ebihara, M., Yishida, N., Takahashi, Y., 2012. Preface: Migration of radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Geochemical Journal, 46, 267-270,

Ehrhardt, J., 1997 The RODOS System: Decision support for off-site emergency management in Europe. Radiation Protection Domistry 73(1-4), 35-40.

 

Gao, Y.Q., Drange, H., Bentsen, M., Johannessen, O., 2004. Simulating transport of non-Chernobyl Cs-137 and Sr-90 in the North Atlantic-Arctic region. Journal of Environmental Radioactivity 71(1), 1-16. (http://dx.doi.org/10.1016/s0265-913x(03)00108-5)

 

Gleizon, P., McDonald, P., 2010. Modelling radioactivity in the Irish Sea: From discharge to dose. Journal of Environmental Radioactivity 101(5), 403-413. (http://dx.doi.org/10.1016/j.jenvrad.2010.02.013)

 

Goshawk, J.A., Clarke, S., Smith, C.N., McDonald, P., 2003. Mead (Part 1) a mathematical model for the long-term dispersion of radioactivity in shelf sea environments. Journal of Environmental Radioactivity 68, 115–135.

 

Hakanson, L., 2000. Modelling radiocesium in lakes and coastal areas, new approaches for ecosystem modellers. A textbook with internet support. Kluwer Academic Publishers, Dordrecht, 215 p.

 

Hakanson, L., 2005. A new general model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables. Journal of Environmental Radioactivity 78, 217–245.

 

Harms, I.H., 1997. Modelling the dispersion of Cs-137 and Pu-239 released from dumped waste in the Kara Sea. Journal of Marine Systems 13(1-4), 1-19. (http://dx.doi.org/10.1016/S0924-7963(96)00117-0)

 

Harms, I.H., Karcher, M.J., Dethleff, D., 2000. Modelling Siberian river runoff - implications for contaminant transport in the Arctic Ocean. Journal of Marine Systems 27(1-3), 95-115. (http://dx.doi.org/10.1016/S0924-7963(00)00062-2)

 

Harms, I.H., Povinec, P.P., 1999. The outflow of radionuclides from Novaya Zemlya bays - modeling and monitoring strategies. Science of the Total Environment 238, 193-201. (http://dx.doi.org/10.1016/S0048-9697(99)00135-7)

 

Hazell, D.R., England, M.H., 2003. Prediction of the fate of radioactive material in the South Pacific Ocean using a global high-resolution ocean model. Journal of Environmental Radioactivity 65(3), 329-355. (http://dx.doi.org/10.1016/s0265-931x(02)00106-6)

 

Heling, R., Bezhenar, R., 2009. Modification of the dynamic radionuclide uptake model BURN by salinity driven transfer parameters for the marine foodweb and its integration in POSEIDON-R Radioprotection, 44(5), 741–746, DOI: 10.1051/radiopro/20095135

 

Heling, R., Lepicard, S., Maderich, V., Shershakov, V., Mungov, G., Catsaros, N. and Popov, A., 2000. POSEIDON Final Report. A module to predict the effects of radioactive discharges in the coastal regions. NRG-Arnhem, The Netherlands.

 

Heling, R., Lepicard, S., Maderich, V., Shershakov, V., Mungov, G., Catsaros, N., 2000. POSEIDON: A module to predict the effects of radioactive discharges in the coastal regions. Final Report, NRG, Arnhem.

 

Heling, R., Niculae, C., 1999. MOIRA Project. The radiostrontium uptake model. Testing Burn98 on fresh water ecosystems. NRG Report P20071/99.5597/P.

 

Heling, R., Zheleznyak, M., Raskob, W., Popov, A., Borodin, R., Gofman, D., Lyashenko, G., Marinets, A., Pokhil, A., Shepeleva, T., Tkalich, P., 1997. Overview of modelling of hydrological pathways in RODOS. Radiation Protection Dosimetry 73 (1–4), 67–70.

 

Henderson, G.M., Heinze, C., Anderson, R.F., Winguth, A.M.E., 1999. Global distribution of the Th-230 flux to ocean sediments constrained by GCM modelling. Deep-Sea Research Part I-Oceanographic Research Papers 46(11), 1861-1893. (http://dx.doi.org/10.1016/S0967-0637(99)00030-8)

 

Honda, M., Aono, T., Aoyama, M., Hamajima Y, Kawakami, H., Kitamura, M., Masumoto, Y., Miyajawa, Y., Takikawa, M., Saino, T., 2012. Dispersion of artificial Cesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochemical Journal 46, 1-9.

 

IAEA, 1986. An oceanographic model for the dispersion of wastes disposed of in the deep sea. Vienna: International Atomic Energy Agency: IAEA Technical Reports Series No. 263.

 

IAEA, 2000. Modelling of the transfer of radiocaesium from deposition to lake ecosystems. Report of the VAMP Aquatic Working Grou IAEA-TECDOC-1143. Vienna.

 

IAEA, 2003. Modelling of the Radiological Impact of Radioactive Waste Dumping in the Arctic Seas. Vienna: International Atomic Energy Agency: IAEA TECDOC Series No. 1330. (http://www.pub.iaea.org/MTCD/publications/PDF/te_1330_web.pdf)

 

Iosjpe, M., Brown, J., Strand, P., 2002. Modified approach to modelling radiological consequences from releases in to the marine environment. Journal of Environmental Radioactivity 60(1-2), 91-10. (http://dx.doi.org/10.1016/S0265-931X(01)0009-4)

 

IRSN, 2013. Fukushima ocean releases study, now in English. (http://www.simplyinfo.org/?=3818)

 

Jean Baptiste, P., 1998. Comment on modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239 Pu-240 by R. Perianez, Journal of Environmental Radioactivity 38(2), 173-194. Journal of Environmental Radioactivity 40(2), 207-210. (http://dx.doi.org/10.1016/S0265-931(98)00020-4)

 

Karher, M.J., Gerlad, S., Harms, I.H., Iosjpe, M., Heldal, H.E., Kershaw, P.J., Sickel, M., 2004. The dispersion of Tc-99 in the Nordic Seas and the Arctic Ocean: A comparison of model results and observations. Journal of Envionmental Radioactivity 74(1-3), 185-198. (http://dx.doi.org/10.1016/j.jenvrad.2004.01.026)

 

Kawamura, H., Ito, T., Kobayashi, T., Otosaka, S., Hirose, N., Togawa, O., 2010. Numerical experiment for Strontium-90 and Cesium-137 in the Japan Sea. Journal of Oceanography 66(5), 649-662. (http://dx.doi.org/10.1007/s1872-010-053-5)

 

Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., Awaji, T., 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137CS discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. Journal of Nuclear Science and Technology 48, 1349-1356.

 

Kobayashi, T., Chino, M., Togawa, O., 2006. Numerical simulations of short-term migration processes of dissolved cesium -137 due to a hypothetical accient of a nuclear submarine in the Japan Sea. Journal of Nuclear Science and Technology 43(5), 569-575. (http://dx.doi.org/10.3327/jnst.43.569)

 

Kobayashi, T., Lee, S.H., Chino, M., 2002. Development of ocean pollution prediction system for Shimokita region model development and verification. Journal of Nuclea Science and Technology 39(2), 171-19. (http://dx.doi.org/10.3327/jnst.39.171)

 

Kobayashi, T., Nagai, H., Chino, M., Kawamura, H., 2013. Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. Journal of Nuclear Science and Technology 50(3), 255-264, Doi:10.1080/00223131.2013.772449.

 

Kobayashi, T., Otosaka, S., Togawa, O., Hayashi, K., 2007. Development of a non-conservative radionuclides dispersion model in the ocean and is application to, surfae cesim-137 dispersion in the Irish Sea. Journal of Nuclear Science and Technology 44(2), 238-247. (http://dx.doi.org/10.3327/jnst.44.238)

 

Koziy, L., Maderich, V., Magvelashvil, N., Zheleznyak, M., 1998. Three-dimensional model of radionuclide dispersion in estuaries and shelf seas. Environmental Modeling & Software 13(5-6), 413-420. (http://dx.doi.org/10.1016/S164-8152(98)0003-X)

 

Koziy, L., Maderich, V., Margvelashvili, N., Zheleznyak, M., 1998. Three-dimensional model of radionuclide dispersion in estuaries and shelf seas. Environmental Modelling & Software 13. 413-420

 

Koziy, L., Maderich, V., Margvelashvili, N., Zheleznyak, M., 2000. Numerical modelling of seasonal dynamics and radionuclide transport in the Kara Sea. In: Oceanic fronts and Related Phenomena. Konstantin Fedorov Int. Memorial Symp., IOC Workshop Rep. Series, N 159, UNESCO’2000, 296-301.

 

Lazar, A., Rancher, J., 1999. Simulation of radionuclide dispersion in the Pacific Ocean from Mururoa atoll .Journal of Environmental Radioactivity 43(1), 31-49. (http://dx.doi.org/10.101/S0265-931X(98)0003-0)

 

Lee, S.H., Kobayashi, T., Chino, M., Ryu, C.S., 2005. Ocean model coupling with atmospheric model for prediction of radioactivity contaminant dispersion in emergency. Journal of Nuclear Science and Technology 42(8), 732-744. (http://dx.doi.org/10.3327/jnst.42.732)

 

Lepicard, S., Heling, R., Maderich, V., 2004. POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas. Journal of Environmental Radioactivity 72(1-2), 153-161. (http://dx.doi.org/10.1016/s0265-931x(03)00197-8)

 

Lepicard, S., Raffestin, D., 1999. POSEIDON 3.0 - Logiciel pour l’évaluation des impacts radiologiques en milieu marin, CEPN-L-99/2.

 

Lyons, M.G., Bradley, S.B., Parker, T.G., 1998. Developments in the CUMBRIA model and its application to radiological assessment in the Irish sea. Radiation Protection Dosimetry 75(1-4), 91-97. (http://rpd.oxfordjournals.org/content/75/1-4/91.short)

 

Maderich, V., 1998. Modelling of the Black Sea changes under climate variations and man-made impact with use of isotope transport studies. In: Proceedings of International Seminar on the use of isotope techniques in marine environmental studies. IAEA-SR-194, IAEA, Vienna.

 

Maderich, V., 1999. Reconstruction and prediction of radionuclide transport in the Mediterranean sea chain. Journal of Environmental Radioactivity 43 205-219.

 

Maderich, V., Dziuba, N., Koshebutsky, V., Zheleznyak M., Volkov, V., 2005. An assessment of flux of radionuclide contamination through the large Siberian rivers to the Kara Sea. Radioprotection,Suppl.1, 40, S413-S419, DOI:10.1051/radiopro:2005s1-061

 

Madigan, D.J., Baumann, Z., Fisher, N.S., 2012. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to Califonia. Proceedings of National Academy of Science of the United States of America 109(24), 9483-9486.

 

Margvelashvili, N., Maderich, V., Yuschenko, S., Zheleznyak, M., 2002. 3D modelling of the mud and radionuclide transport in Chernobyl cooling pond and Dnieper–Bug Estuary. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediments Dynamics in the Marine Environment Proceedings of INTERCOH-2000. Elsevier, 595–610.

 

Margvelashvili, N., Maderich, V., Zheleznyak, M., 1997. THREETOX-computer code to simulate three-demensional dispersion of radionuclides in homogenous and stratified water bodies. Radiation Protection Dosimetry, 73(1-4), 177-180.

 

Margvelashvili, N., Maderich, V., Zheleznyak, M., 1999. Simulation of radionuclide fluxes from the Dnieper–Bug Estuary into the Black Sea. Journal of Environmental Radioactivity. 43, 157–171.

 

Margvelashvily, N., Maderich, V., Zheleznyak, M., 1999. Simulation of radionuclide fluxes from the Dnieper-Bug Estuary into the Black Sea. Journal of Environmental Radioactivity 43, 157-171.

Marsden, O.J., Abrahamsen, L., Bryan, N.D., Day, J.P., Fifield, L.K., Gent, C., Goodall, P.S., Morris K, Livens FR., 2006. Transport and accumulation of actinide elements in the near-shore environment: field and modelling studies. Sedimentology 53(1), 237-248. (http://dx.doi.org/10.1111/j.1365-3091.2005.00761.x)

 

Masumoto, Y., Miyazawa, Y., Tsumume, D., Tsubono, T., Kobayashi, T., Kawamura, H., Estournel, C., Marseleix, P., Lanerolle, L., Mehra, A., Garrafo, Z.D., 2012. Oceanic dispersion simulations of 137CS released from the Fukushuma Daiichi nuclear power plant. Elements 8, 207-212.

 

Mittelstaedt, E., Osvath, I., Povinec, P.P., Togawa, O., Scott, E.M., 1999. Transport of radionuclides from the Mururoa and Fangataufa atolls through the marine environment. Science of the Total Environment 238, 301-309. (http://dx.doi.org/10.1016/S0048-9697(99)00144-8)

 

Miyazawa, Y., Masumoto, Y., Varlamov, S.M., Miyama, T., 2012. Transport simulation of the radionuclide from the shelf to open ocean around Fukushima. Continental Shelf Research. 50-51, 16-29.

 

Miyazawa, Y., Masumoto, Y., Varlamov, S.M., Mayama, T., Takigawa, M., Honda, M., Saino, T., 2012. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences Discuss., 9, 13783-13816. (http://www.biogeosciences-discuss.net/13783/2012)doi:10.5194/bgd-9-13783-2012

 

Monte, L., 2001. A generic model for assessing the effects of countermeasures to reduce the radionuclide contamination levels in abiotic components of fresh water systems and complex catchments. Environ. Model. Software 16, 669–690.

 

Monte, L., Boyer, P., Brittain, J.E., Hakanson, L., Lepicard, S., Smith, J.T. (2005a) Review and assessment of models for predicting the migration of radionuclides through rivers. Journal of Environmental Radioactivity. 79, 273–296.

 

Monte, L., Brittain, J.E., Hakanson, L., Heling, R., Smith, J.T., Zheleznyak, M., 2003. Review and assessment of models used to predict the fate of radionuclides in lakes. Journal of Environmental Radioactivity. 69, 177–205.

 

Monte, L., Brittain, J.E., Hakanson, L., Smith, T.J., van der Perk, M., 2004. Review and assessment of models for predicting the migration of radionuclides from catchments. Journal of Environmental Radioactivity. 75, 83–103.

 

Monte, L., Desideri, D., Grimani, C., Angeli, G., (2005) Modelling the long-term behaviour of radiocaesium and radiostrontium in two Italian lakes. Journal of Environmental Radioactivity. 80, 105–123.

 

Monte, L., Hakanson, L., Perianez, R., Laptev, G., Zheleznyak, M., Maderich, V., Angeli, G., Koshebutsky, V., 2006. Experiences from a case study of multi-model application to assess the behaviour of pollutants in the Dnieper-Bug Estuary. Ecological Modelling 195(3-4), 247-263. (http://dx.doi.org/10.1016/j.ecolmodel.2005.11.040)

 

Monte, L., Salvatori, L., Spezzano, P., 1995. Modelling radionuclide behaviour in deep lakes of the Italian Alpine region: seasonality effects and comparison with deep volcanic lakes of Central Italy. Technical report ENEA, RT/AMB/95/12, Rome.

 

Morehead, M.D., Muench, R.D., Bacastow, R., Dewey, R.K., 1997. Potential radionuclide transport pathways from seafloor dumpsites: Kamchatka region of the North Pacific Ocean. Marine Pollution Bulletin 35(7-12), 353-364. (http://dx.doi.org/10.1016/S0025-326X(97)00091-X)

 

Morino, Y., Ohara, T., Nishizawa, M., 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophysical Research Letters, 38, L00G11, DOI: 10.1029/2011GL048689

 

Morisawa, S., Shimada, Y., Yoneda, M., 2000. Flow, stock and destination of radioactive fallout Cs-137 in the global environment. Water Science and Technology 42(7-8), 155-162. (http://www.iwaponline.com/wst/04207/wst042070155.htm)

 

Nakano, H., Motoi, T., Hirose, K., Aoyama, M., 2010. Analysis of Cs-137 concentration in the Pacific using a Lagrangian approach. Journal of Geophysical Research-Oceans 115. (http://dx.doi.org/10.1029/2009jc005640)

 

Nakano, M., Povinec, P.P., 2003. Modelling the distribution of plutonium in the Pacific Ocean. Journal of Environmental Radioactivity 69(1-2), 85-106. (http://dx.doi.org/10.1016/s0265-931x(03)00088-2)

 

Nakano, M., Povinec, P.P., 2003. Oceanic general circulation model for the assessment of the distribution of Cs-137 in the world ocean. Deep-Sea Research Part Ii-Topical Studies in Oceanography 50(17-21), 2803-2816. (http://dx.doi.org/10.1016/s0967-0645(03)00149-8)

 

Nakano, M., Province, P., 2012. Long-term simulations of the 137CS dispersion from the Fukushima accident in the world ocean. Journal of Environmental Radioactivity 111, 109-115.

Nielsen, S.P., 1995. A box model for northeast Atlantic coastal waters compared with radioactive-tracers. Journal of Marine Systems 6(5-6), 545-560. (http://dx.doi.org/10.1016/0924-7963(95)00023-I)

 

Nielsen, S.P., 1998. A sensitivity analysis of a radiological assessment model for Arctic waters. Radiation Protection Dosimetry 75(1-4), 213-218. (http://rpd.oxfordjournals.org/content/75/1-4/213.short)

 

Olbert, A.I., Hartnett, M., Dabrowski, T., 2010. Assessment of Tc-99 monitoring within the western Irish Sea using a numerical model. Science of the Total Environment 408(17), 3671-3682. (http://dx.doi.org/10.1016/j.scitotenv.2010.04.053)

 

Onishi, Y., & Trent, D. S., 1985. Three-dimensional simulation of flow, salinity, sediment and radionuclide movements in the Hudson river estuary. Proceedings of the ASCE Hydraulics Division Conference (1095-1100). New York: Lake Buena Vista, ASCE.

 

Onishi, Y., Dummuller, D. C. and Trent, D. S., 1989. Preliminary Testing of Turbulence and Radionuclide Transport Modeling in Deep Ocean Environment. PNL-6853 (Pacific Northwest Laboratory, Richland, Washington).

 

Onishi, Y., Trent, D.S., 1992. Turbulence modeling for deep ocean radionuclide disposal. International Journal for Numerical Methods in Fluids 15(9), 1059-1071. (http://dx.doi.org/10.1002/fld.1650150910)

 

Orre, S., Smith, J.N., Alfimov, V., Bentsen, M., 2010. Simulating transport of I-129 and idealized tracers in the northern North Atlantic Ocean. Environmental Fluid Mechanics 10(1-2), 213-233. (http://dx.doi.org/10.1007/s10652-009-9138-3)

 

Paluszkiewicz, T., Hilber, L.F., Richmond, M.C., Bradley, D.J., Thomas, S.A., 2001. Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea. Marine Pollution Bulletin 43(1-6), 111-121.  (http://dx.doi.org/10.1016/S0025-326X(00)00231-9)

 

Perianez, R., 1998. A three dimensional sigma-coordinate model to simulate the dispersion of radionuclides in the marine environment: application to the Irish Sea. Ecological Modelling 114(1), 59-70. (http://dx.doi.org/10.1016/S0304-3800(98)00116-1)

 

Perianez, R., 1998. Comment on modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239,Pu-240 by R. Perianez, Journal of Environmental Radioactivity. 38(2), 173-194, Reply. Journal of Environmental Radioactivity 40(2), 210-212. (http://dx.doi.org/10.1016/S0265-931X(98)00021-6)

 

Perianez, R., 1998. Modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239, Pu-240. Journal of Environmental Radioactivity 38(2), 173-194. (http://dx.doi.org/10.1016/S0265-931X(97)00029-5)

 

Perianez, R., 1998. Three-dimensional modelling of the tide-induced dispersion of radionuclides in the sea. Journal of Environmental Radioactivity. 40(3), 215-237.  (http://dx.doi.org/10.1016/S0265-931X(97)00079-9)

 

Perianez, R., 1999. Three-dimensional modelling of the tidal dispersion of non-conservative radionuclides in the marine environment. Application to Pu-239, Pu-240 dispersion in the eastern Irish Sea. Journal of Marine Systems 22(1), 37-51. (http://dx.doi.org/10.1016/S0924-7963(99)00029-9)

 

Perianez, R., 2000. Modelling the physico-chemical speciation of plutonium in the eastern Irish Sea. Journal of Environmental Radioactivity 49(1), 11-33. (http://dx.doi.org/10.1016/S0265-931X(01)00168-0)

 

Perianez, R., 2002. Modelling the suspended matter dynamics in a marine environment using a three dimensional sigma coordinate model: application to the eastern Irish Sea. Applied Mathematical Modelling 26(5), 583-601. (http://dx.doi.org/10.1016/S0307-904X(01)00070-1)

 

Perianez, R., 2003. Kinetic modelling of the dispersion of plutonium in the eastern Irish Sea: two approaches. Journal of Marine Systems 38(3-4), 259-275. (http://dx.doi.org/10.1016/S0924-7963(02)00242-7)

 

Perianez, R., 2003. Redissolution and long-term transport of radionuclides released from a contaminated sediment: a numerical modelling study. Estuarine Coastal and Shelf Science 56(1), 5-14.  (http://dx.doi.org/10.1016/s0272-7714(02)00115-4)

 

Perianez, R., 2004. A particle-tracking model for simulating pollutant dispersion in the Strait of Gibraltar. Marine Pollution Bulletin 49(7-8), 613-623. (http://dx.doi.org/10.1016/j.marpolbul.2004.04.003)

 

Perianez, R., 2004. On the sensitivity of a marine dispersion model to parameters describing the transfers of radionuclides between the liquid and solid phases. Journal of Environmental Radioactivity 73(1), 101-115. (http://dx.doi.org/10.1016/j.jenvrad.2003.07.003)

 

Perianez, R., 2004. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model. Journal of Environmental Radioactivity 71(3), 243-259. (http://dx.doi.org/10.1016/s0265-931x(03)00172-3)

 

Perianez, R., 2005. Modelling the dispersion of radionuclides in the marine environment: An Introduction. Dordrecht: Springer. (http://dx.doi.org/10.1007/b138979)

 

Perianez, R., 2005. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion. Environmental Pollution 133(2), 351-364. (http://dx.doi.org/10.1016/j.envpol.2004.05.021)

 

Perianez, R., 2006. Modelling surface radioactive spill dispersion in the Alboran Sea. Journal of Environmental Radioactivity 90(1), 48-67. (http://dx.doi.org/10.1016/j.jenvrad.2006.06.009)

 

Perianez, R., 2007. Chemical and oil spill rapid response modelling in the Strait of Gibraltar-Alboran Sea. Ecological Modelling 207(2-4), 210-222.  (http://dx.doi.org/10.1016/j.ecolmodel.2007.04.033)

 

Perianez, R., 2008. A modelling study on Cs-137 and Pu-239, Pu-240 behaviour in the Alboran Sea, western Mediterranean. Journal of Environmental Radioactivity 99(4), 694-715. (http://dx.doi.org/10.1016/j.jenvrad.2007.09.011)

 

Perianez, R., Abril, J.M., Garc´ıa-Leo´ n, M., 1996. Modelling the dispersion of non-conservative radionuclides in tidal waters. Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31, 127–141.

 

Perianez, R., Caravaca, F., 2010. A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters. Marine Pollution Bulletin 60(9), 1412-1422. (http://dx.doi.org/10.1016/j.marpolbul.2010.05.016)

 

Perianez, R., Martinez-Aguirre, A., 1997. A six-phase model to simulate the contamination by non-conservative radionuclides of sediments, soils and plants in a marsh area. Application to the Odiel marsh in southwest Spain. Journal of Environmental Radioactivity 37(1), 29-54. (http://dx.doi.org/10.1016/S0265-931X(96)00092-6)

 

Perianez, R., Pascual-Granged, A., 2008. Modelling surface radioactive, chemical and oil spills in the Strait of Gibraltar. Computers & Geosciences 34(2), 163-180. (http://dx.doi.org/10.1016/j.cageo.2007.02.002)

 

Perianez, R., Suh, K.S., Min, B.I., 2012. Local scale marine modeling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description. Marine pollution Bulletin 64. 2333-2339.

 

Pfingsten, W., Hadermann, J., Perrochet, P., 2001. Radionuclide release and transport from nuclear underground tests performed at Mururoa and Fangataufa - predictions under uncertainty. Journal of Contaminant Hydrology 47(2-4), 349-363. (http://dx.doi.org/10.1016/S0169-7722(00)00162-5)

 

Poon, C.B., Au, S.M., 2002. Modelling the Cs-137 ingestion dose from consumption of marine fish in Hong Kong. Radiation Protection Dosimetry 98(2), 199-209. (http://rpd.oxfordjournals.org/content/98/2/199.short)

 

Poon, C.B., Au, S.M., 2003. Predicting the Cs-137 ingestion dose from marine fish consumption in Hong Kong after an accidental release. Journal of Radiological Protection 23(1), 97-104. (http://dx.doi.org/10.1088/0952-4746/23/1/306)

 

Prandle, D., 1984. A Modellino Study of the Mixing of 137Cs in the seas of the European continental shelf, Philosophical Transactions of the Royal Society of London, A310. 407–436.

 

Preller, R.H., Cheng, A., 1999. Modeling the transport of radioactive contaminants in the Arctic. Marine Pollution Bulletin 38(2), 71-91. (http://dx.doi.org/10.1016/S0025-326X(99)80001-0)

 

Ribbe, J., Mullernavarra, S.H., Nies, H., 1991. A one-dimensional dispersion model for radionuclides in the marine-environment applied to the Chernobyl fallout over the northern Baltic Sea. Journal of Environmental Radioactivity 14(1), 55-72. (http://dx.doi.org/10.1016/ 0265-931X(91)90015-8)

 

Rodrigues, O., Figueira, R.C.L., Cunha, I.I.L., 1997. Dispersion model of cesium-137 in surface oceanic waters. Journal of Radioanalytical and Nuclear Chemistry 222(1-2), 209-213. (http://dx.doi.org/10.1007/BF02034271)

 

Roy-Barman, M., 2009. Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean. Biogeosciences 6(12), 3091-3107. (http://dx.doi.org/10.5194/bgd-6-7853-2009)

 

Salomon, J.C., Breton, M., Guegueniat, P., 1995. A 2D long term advection-dispersion model for the Channel and southern North Sea Part B: Transit time and transfer function from Cap de La Hague. Journal of Marine Systems 6(5-6), 515-527. (http://dx.doi.org/10.1016/0924-7963(95)00021-g)

 

Sanchez-Cabeza, J.A., 1998. Comment on modelling the distribution of radionuclides in deep ocean water columns. Application to H-3, Cs-137 and Pu-239,Pu-240 by R. Perianez, J. Environ. Radioactivity. 38(2), 173-194. Journal of Environmental Radioactivity 40(2), 212-213. (http://dx.doi.org/10.1016/S0265-931X(98)00022-8)

 

Sanchez-Cabeza, J.A., Ortega, M., Merino, J., Masque, P., 2002. Long-term box modelling of Cs-137 in the Mediterranean Sea. Journal of Marine Systems 33, 457-472. (http://dx.doi.org/10.1016/S0924-7963(02)00071-4)

 

Sandberg, J., Kumblad, L., Kautsky, U., 2007. Can ECOPATH with ECOSIM enhance models of radionuclide flows in food webs? - an example for C-14 in a coastal food web in the Baltic Sea. Journal of Environmental Radioactivity 92(2), 96-111. (http://dx.doi.org/10.1016/j.jenvrad.2006.09.010)

 

Schonfeld, W., 1995. Numerical simulation of the dispersion of artificial radionuclides in the English Channel and the North Sea. J. Marine Syst. 6, 529–544.

 

Scott, E.M., Gurbutt, P., Harms, I., Heling, R., Nielsen, S.P., Osvath, I., Preller, R., Sazykina, T., Wada, A., Sjoeblom, K.L., 1997. Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas. Science of the Total Environment 202(1-3), 123-134. (http://dx.doi.org/10.1016/S0048-9697(97)00109-5)

 

Semizhon, T., Rollin, S., Spasova, Y., Klemt, E., 2010. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment. Journal of Environmental Radioactivity 101(5), 385-402. (http://dx.doi.org/10.1016/j.jenvrad.2010.02.012)

 

Shimada, Y., Morisawa, S., Inoue, Y., 1996. A numerical model for the analysis and evaluation of global Cs-137 fallout. Health Physics 70(2), 171-179. (http://journals.lww.com/health-physics/Abstract/1996/02000/A_Numerical_Model_for_the_Analysis_and_Evaluation.3.aspx)

 

Smith, C.N., Goshawk, J.A., Charles, K., McDonald, P., Leonard, K., McCubbin, D., 2003. Mead (Part 2), predictions of radioactivity concentrations in the Irish Sea. Journal of Environmental Radioactivity 68, 193–241.

 

Smith, C.N., Goshawk, J.A., Charles, K., McDonald, P., Leonard, K.S., McCubbin, D., 2003. MEAD (part II) - Predictions of radioactivity concentrations in the Irish Sea. Journal of Environmental Radioactivity 68(3), 193-214. (http://dx.doi.org/10.1016/s0265-931x(03)00041-9)

 

Smith, J.T., Comans, R.N.J., 1996. Modelling the diffusive transport and remobilisation of 137Cs in sediments: the effects of sorption kinetics and reversibility. Geochimica et Cosmochimica Acta 60, 995–1004.

 

Soetaert, K., Herman, P.M.J., Middelburg, J.J., Heip, C., deStigter, H.S., vanWeering, T.C.E., Epping E, Helder W., 1996. Modeling Pb-210-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing. Journal of Marine Research 54(6), 1207-1227. (http://dx.doi.org/10.1357/0022240963213808)

 

Stanev, E.V., Buesseler, K.O., Staneva, J.V., Livingston, H.D., 1999. A comparison of modelled and measured Chernobyl Sr-90 distributions in the Black Sea. Journal of Environmental Radioactivity 43(2), 187-203. (http://dx.doi.org/10.1016/S0265-931X(98)00091-5)

 

Staneva, J.V., Buesseler, K.O., Stanev, E.V., Livingston, H.D., 1999. The application of radiotracers to a study of Black Sea circulation: Validation of numerical simulations against observed weapons testing and Chernobyl Cs-137 data. Journal of Geophysical Research-Oceans 104(C5), 11099-11114. (http://dx.doi.org/10.1029/1998JC900121)

 

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J.F., Eckhardt, S., Tapia, C., Vargas, A., Yasunari, T.J., 2012. Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12,2313–2343, 2012. (http://www.atmos-chem-phys.net/12/2313/2012/)

 

Takemura, T., Nakamura, H., Takigawa, M., Kondo, H., Satomura, T., Miyasaka, T., Nakajima, T., 2011. A Numerical Simulation of Global Transport of Atmospheric Particles Emitted from the Fukushima Daiichi Nuclear Power Plant. SOLA, 7, 101−104, http://dx.doi.org/10.2151/sola.2011-026

 

Togawa, O., 1996. Computer code system DSOCEAN for assessing the collective dose of Japanese due to radionuclides released to the ocean from a reprocessing plant. Journal of Nuclear Science and Technology 33(10), 792-803. (http://dx.doi.org/10.3327/jnst.33.792)

 

Toscano-Jimenez, M., Garcia-Tenorio, R., 2004. A three-dimensional model for the dispersion of radioactive substances in marine ecosystems. Application to the Baltic Sea after the Chernobyl disaster. Ocean Engineering 31(8-9), 999-1018. (http://dx.doi.org/10.1016/j.oceaneng.2003.11.003)

 

Tsumume, D., Tsubono, T., Aoyama, M., Hirose, K., 2012. Distribution of oceanic 137CS from the Fukushima Daiichi nuclear power plant simulated numerically by a regional ocean model. Journal of Environmental Radioactivity 111, 100-108.

 

Tsumune, D., Aoyama, M., Hirose, K., 2003. Behavior of Cs-137 concentrations in the North Pacific in an ocean general circulation model. Journal of Geophysical Research-Oceans 108(C8). (http://dx.doi.org/10.1029/2002jc001434)

 

Tsumune, D., Aoyama, M., Hirose, K., 2003. Numerical simulation of Cs-137 and Pu-239,Pu-240 concentrations by an ocean general circulation model. Journal of Environmental Radioactivity 69(1-2), 61-84. (http://dx.doi.org/10.1016/s0265-931x(03)00087-0)

 

Tsumune, D., Aoyama, M., Hirose, K., Maruyama, K., Nakashiki, N., 2001. Calculation of artificial radionuclides in the ocean by an ocean general circulation model. Journal of Radioanalytical and Nuclear Chemistry 248(3), 777-783. (http://dx.doi.org/10.1023/A:1010665300905)

 

Tsumune, D., Tsubono, T., Aoyama, M., Hirose, K., 2012. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. Journal of Environmental Radioactivity 111, 100–108

 

Veleva, B., Koziy, L., Yushchenko, S., Maderich, V., Mungov, G., 2001. Assessment of radionuclide contamination in the Black sea using POSEIDON–RODOS system. Proceedings of the Congress on the Radioecology–Ecotoxicology of Continental and Estuarine Environments ECORAD Radioprotection vol. 37.

 

Wang, W.X., Ke, C.H., Yu, K.N., Lam, P.K.S., 2000. Modeling radiocesium bioaccumulation in a marine food chain. Marine Ecology-Progress Series 208, 41-50. (http://dx.doi.org/10.3354/meps208041)

 

Yuschenko, S., Kovalets, I., Maderich, V., Treebushny, D., Zheleznyak, M., 2005. Modelling the radionuclide contamination of the Black Sea in the result of Chernobyl accident using circulation model and data assimilation. Radioprotection, Suppl.1, 40, S685-S691, DOI:10.1051/radiopro:2005s4-100

 

Zheleznyak, M., Demchenko, R., Khursin, S., Kuzmenko, Yu, Tkalich, P. and Vitiuk, N., 1992. Mathematical modeling of radionuclide dispersion in the Pripyat-Dnieper aquatic system after the Chernobyl accident. Sci. Total Environ. 112, 89-114.

 

Zheleznyak, M., Margvelashvili, N., 1997. Numerical modelling of three-dimensional radionuclide fields in Kiev Reservoir. Dopovidi (Proceedings) of National Academy of Sciences of Ukraine 12, 165–169

 

Observations and Analysis related with Fukushima Accident

 

Aoyama, M., Tsumune, D., Hamajima, Y., 2012. Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident. J. Radioanal. Nucl. Chem. DOI:10.1007/s10967-012-2033-2

 

Aoyama, M., Tsumune, D., Uematsu, M., Kondo, F., Hamajima, Y., 2012. Temporal variation of 134Cs and 137Cs activities in surface water at stations along the coastline near the Fukushima Dai-ichi Nuclear Power Plant accident site, Japan. Geochemical Journal, 46, 321 to 325

 

Bailly du Bois, P., Laguionie, P., Boust, D., Korsakissok, I., Didier, D., Fiévet, B., 2012. Estimation of marine source-term following Fukushima Dai-ichi accident. Journal of Environmental Radioactivity. 114, 2-9. (http://dx.doi.org/10.1016/j.jenvrad.2011.11.015)

 

Buesseler, K., Aoyama, M., Fukasawa, M., 2011. Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity. Environ. Sci. Technol. 2011, 45, 9931–9935. (http://dx.doi.org/10.1021/es202816c)

 

Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I., Baumann, H., Baumann, Z., Breier, C.F., Douglass, E.M., George, J., Macdonald, A.M., Miyamoto, H., Nishikawa, J., Pike, S.M., Yoshida, S., 2012. Fukushima-derived radionuclides in the ocean and biota off Japan. Proceedings of the National Academy of Sciences of the United States of America. 109(16), 5984-5988.

 

Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., Shizuma, K., 2012. Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation Journal of Environmental Radioactivity 111, 18-27.

 

Inoue, M., Kofuji, H., Hamajima, Y., Nagao, S., Yoshida, K., Yamamoto, M., 2012. 134Cs and 137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait, northeastern Japan, after Fukushima Dai-ichi Nuclear Power Plant accident Journal of Environmental Radioactivity 111,  116-119.

 

Inoue, M., Kofuji, H., Nagao, S., Yamamoto, M., Hamajima, Y., Fujimoto, K., Yoshida, K., Suziki, A., Takashiro, H., Hayakawa, K., Hamataka, K., Yoshida, S., Kunugi, M., Minakawa, M., 2012. Low levels of 134Cs and 137Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Geochemical Journal, 46, 311-320

 

Inoue, M., Kofuji, H., Nagao, S., Yamamoto, M., Hamajima, Y., Yoshida, K., Fujimoto, K., Takada, T., Isoda, Y., 2012. Lateral variation of 134Cs and 137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident Journal of Environmental Radioactivity 109, 45-51.

 

Kato, H., Onda, Y., Teramage, M., 2012. Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. Journal of Environmental Radioactivity 111 59-64

 

Povinec, P.P., Hirose, K., Aoyama, M., 2012. Radiostrontium in the Western North Pacific: Characteristics, behavior, and the Fukushima Impact Environ. Sci. Technol. 46, 10356−10363

 

Tanaka, K., Iwatani, H., Sakaguchi, A., Takahashi, Y., Onda, Y., 2013. Local distribution of radioactivity in tree leaves contaminated by fallout of the radionuclides emitted from the Fukushima Daiichi Nuclear Power Plant. J. Radioanal. Nucl. Chem. 295, 2007–2014, DOI 10.1007/s10967-012-2192-1.

 

Tanaka, K., Sakaguchi, A., Kanai, Y., Tsuruta, H., Shinohara, A., Takahashi, Y., 2013. Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem. 295, 1927–1937, DOI:10.1007/s10967-012-2160-9

 

Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., Saito, T., Kanai, Y., 2012. Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi Nuclear Power Station Accident. Geochemical Journal, 46, 73-76.

 

Yamamoto, M., Takada, T., Nagao, S., Koike, T., Shimada, K., Hoshi, M., Zhumadilov, K., Shima, T., Fukuoka, M., Imanaka, T., Endo, S., Sakaguchi, A., Kimura, S., 2012. An early survey of the radioactive contamination of soil due to the Fukushima Dai-ichi Nuclear Power Plant accident, with emphasis on plutonium analysis. Geochemical Journal, 46, 341-353.

 

Zheng, J., Aono, T., Uchida, S., Zhang, J., Honda, M.C., 2012. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi nuclear power plant accident. Geochemical Journal, 46, 361-369

 

Zheng, J., Tagami, K., Uchida, S., 2012. Rapid analysis of U isotopes in vegetables using ICP-MS: application to the emergency U monitoring after the nuclear accident at TEPCO’s Fukushima Dai-ichi power station. Journal of Radioanalytical and Nuclear Chemistry, 292(1), 171-175.

 

References cited in this website (http://www.mrcor.org)

 

Choi, B. H., 2003. The sand transport in the Yellow Sea. In. Proceeding of Workshop on Sedimentation in the Yellow Sea Coast, (ed.) B.H. Choi, Y.A. Park, 39-52, published by Korean Society of Coastal and Ocean Engineers and Korean Association of Ocean Science and Technology Societies, pp380.


Perianez, R., Elliott, A. J., 2002. A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters. J. Environmental Radioactivity 58, 13-33.

 

Tsumune, D., Aoyama, M., Hirose, K., 2003.Numerical simulation of 137Cs and 239, 240Pu concentrations by an ocean general circulation model. J. Environmental Radioactivity 69, 61-84.


Zhang, Y., Baptista, A. M., 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling 21, 3-4, 71-96.